Many data teams waste budget by misusing senior engineering talent on firefighting tasks and poor tool choices, rather than focusing on high-value, strategic work. High-performing teams prioritise experienced hires, measure business impact, reduce reactive work, and use AI and tools strategically to maximise ROI and team effectiveness.
Read the articleModern ETL pricing models often charge based on row counts, which fundamentally misaligns with how analytical systems actually process data—via columnar methods focused on compute efficiency and performance. This disconnect not only creates technical debt and unpredictable costs but also diverts engineering resources away from optimisation and innovation toward managing arbitrary billing constraints.
Read the articleRow-based ETL pricing models create unpredictable, disproportionately high costs that penalize business growth, disrupt budgeting, and divert engineering resources from innovation to cost control. Performance-based pricing, aligned with actual infrastructure usage, offers a more predictable and strategic alternative that supports scalable data operations without financial volatility.
Read the articleThe June 12, 2025 Google Cloud outage revealed a harsh truth: modern data stacks often create more firefighting than innovation, as fragmented toolchains and so-called “managed” services increase maintenance burdens, costs, and risk. Matatika’s Mirror Mode offers a risk-free path out of this cycle by allowing teams to validate a more stable, antifragile infrastructure—enabling a shift from constant maintenance to strategic, high-impact data work.
Read the articleMany data teams avoid proper data modelling due to its perceived complexity, often relying on ad-hoc structures that lead to performance issues and eroded trust in analytics. The most effective teams use flexible schema strategies, balancing star and snowflake designs, to align with their specific performance, storage, and maintenance needs.
Read the articleStay up to date with the latest news and insights for data leaders.